
1. .# "I

N A S A C O N T R A C T O R

R E P O R T

o*
*o
00
P

I

PC:
V

SPACEBORNE COMPUTER EXECUTIVE ROUTINE
FUNCTIONAL DESIGN SPECIFICATION

Volume 111. Executive Routine Primitives
and Process Control

by Jumes R. Kennedy, Sr.

Prepared by
COMPUTER SCIENCES CORPORATION

FIELD SERVICES DIVISION, AEROSPACE SYSTEMS CENTER

Huntsville, Ala. 3 5 802

for George C. MarshaZZ Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. OCTOBER 1971

TECH LIBRARY KAFB, NM

TECHNICAL R I llllll Ill11 1111 1111 IIIII lllll11lIlS I
I . REPORT NO. 12. C O Y R M Y W T ACCESSION NO. 13. OObLOL4
" NASA CR-1869 I
1. TITLE AND SUBTITLE

~~ ~~

5. R E P m T DATE
Spaceborne Computer Executive Routine Functional Design . October 1971
Specification, Volume III. Executive Routine Primitives 6. ' P E R F O R ~ M I N G ~ Z A T I O N CODE

4- PrEnss cnntrnl
7. AUTHOR(S1

~-
1-8. PERFORMING ORGANIZATION fiEPORr #

James R. Kennedy, Sr.

Computer Sciences Corporation
Field Services Division, Aerospace Systems Center CONTRACT OR GRANT NO.

"

" .~ ~ ~ ~

B. PERFORMING ORGANIZATION NAME 'ND ADDRESS
. ~~ - ~ ~ ~ ~

lo . WORK UNIT, NO.

National Aeronautics and Space Administration
Washington, D. C. 20546 14. SPONSORING AGENCY CODE

. ." ~ I
5. SUPPLEMENTARY NOTES

. ." ~ ~~

6. -ABSTRACT
.~ " - "" ~ .~

This report discusses the concept of a process, and formalizes the process
state transitions activated by application program usage of system primitives.
Approaches for implementing the required control capabilities in both software
(the traditional approach) and digital hardware ,logic are detailed. Logic network
and control sequencing requirements are derived, and the associated circuit diagrams
are shown. Software prockdures for performing a similar function are developed and
depicted in an ALGOL-like source program form. A brief comparison of the two
approaches is made.

This document is Volume I11 of a three-volume report entitled "Spaceborne
Computer Executive Routine Functional Design Specification. ' I The other two volumes
are:

Volume I: Functional Design of a Flight Computer Executive Program
for the Reusable Ehuttle

Volume 11: Executive Design for Space Station/Base

7. KEY WORDS - la , D l 8 T R l r ~ - l O H ~ ~ A T C M C N T

Executive Routine Multiprocessor Unclassified - Unlimited
Operating System Multiprogramming
Hardware Executive Scheduling
Real Time Monitor Spaceborne Computer

Y

19. SECURITY CLASSIF. (d thh rap-)
-

20. SECURITY CLASSIF. (or tkt. -10)

. . , , A L L .

21. NO. OF PAGES

Unclassified Unclassified 95
. . . .

For sale by the National Technical Information Service, Springfield, Virginia 22151

L

- - - I

.

VOLUME 111

EXECUTIVE ROUTINE PRIMITIVES
AND

PROCESS CONTROL

....

SECTION I .

SECTION 11 .

SECTION 111 .

SECTION IV .

SECTION V .

TABLE OF CONTENTS

INTRODUCTION 3
A . Concept of a Process 4
B . Construction 5

PRIMITIVES 9
A . Wai t 9
B . Continue 9
C . Wake . 10
D . Stop . 10
E . Suspend 10
F . Release 11
G . Termination 12

PROCESS CONTROL STATES
A . Compute Cycle
B . The Work Variable
C . Dispatching
D . Cooperative Processes
E . Suspended States
F . Process Termination
G . Example of Usage

13
13
15
1 7
18
18
20
22

IMPLEMENTATION 25
A . Transition Matrix 25
B . Control Variables 29
C . Sum of Products 31
D . Processor Control 34

1 . Dispatcher 34
a . Ready List 34
b . Dispatcher Overview 35

2 . Trap Processing 37
E . Hardware Implementation 41

1 . Logic Network 43
2 . ~ Process Control Sequencing 43

F . Software Implementation 52

-

MONITORING 6 1

iii

.

VOLUME 111

EXECUTIVE ROUTINE PRIMITIVES
AND

PROCESS CONTROL

TABLE OF CONTENTS (Continued)

Page

SECTION VI. COMPARISONS 65

SECTION VII. CONCLUSIONS 67

SECTION VIII. RECOMMENDATIONS 69

APPENDIX A LOGIC MAPS FOR PROCESS CONTROL 71

APPENDIX B PROCESS CONTROL FUNCTIONS 77

iv

- .__. - r -

LIST OF ILLUSTRATIONS

Figure

10

11

12

13

14

15

16

17

A1

B1

Title

Process Control Block
Initial State Transitions
Revised State Transitions
Extended State Transitions
Final State Transitions
Alternate Form for STOP Transition
Evaluation of X .
Dispatcher Overview
Processor States .
Logic Network for Process Control
R-S Flip-Flop .
Process Control Sequencing
Logic Overview .
Process Control Primitives
Control Flow Diagram
Interprocessor Interrupt Procedure (TRAP)
Source Form Statement Listings for Process Control .
Maps fo r Derivation of Boolean Expressions
Process Control Functions

V

14

16

19

2 1

28

33

36

39

47

48

51

53

56-57

58

59

60

72

78

.. "" . . " - " ""

LIST OF TABLES

Table

1

2

3

4

5

6a

6b

7

8

9

Title

Process Control Block Entry Descriptions
State Transition Matrix
Work Variable Control
Example Standard Basis
Expanded Matrix : . .
Expanded Standard Basis
Control Variables .
Sum of Products Expressions
Steps in Control Sequence
Cost and Time Comparison

Page

7

26

27

30

42

44

45

46

50

65

vi

. "-

DEFINITION OF SYRlBOLS

AAIJ

Backlog

Compute Cycle

I11

L PS

LSR

PCB

Preempt Dispatcher Action

Process

Process Construction

State Diagram

Task

Allow all interrupts and jump. The jump in-
struction which transfers processor control
to a process return address or entry point.

An amount of work which has been scheduled
but has not been completely processed.

The complete transition cycle ("idle, f t "ready,
r'running'').

Initiate Interprocessor Interrupt. A computer
instruction used by one central processor,
under executive control, to signal another
central processor for the purpose of assigning
tasks.

Load Processor State Register. The executive
instruction which enables the executive to set
the state of a processor to insure system
protection.

Load Storage Register. The executive instruc-
tion which sets the memory access boundaries
to those of a given process.

Process Control Block

The act of seizing control of a processor from
a process for assignment to a higher priority
process.

The sequence of actions performed in order to
complete a task.

The act of executing a set of procedures that
create a process.

A representation for a finite state machine
that has inputs and outputs.

A specific quantity of work to be accomplished.

vii

TCL

TDR

TDS

TPL

Trap

DEFINITION OF SYMBOLS (Continued)

Trap Control Line. Indicator denoting that a
trap has occurred.

Trap Designator Register. Indicator denoting
whether a processor is the trap processor or
not.

Trap Designator Set

Trap Processing Line. Indicator to denote
that trap processing is occurring.

A list-driven processor capability activated
by the process control mechanism; a transfer
of processor control to a specified location as
a result of some event or condition requiring
special attention.

viii

FOREWORD

The work reported herein was administered in the Systems Research
Branch, Computer Systems Division, Computation Laboratory, MSFC, with
Bobby C. Hodges assigned as Contracting Officer's Representative. In
addition to his routine duties as Technical Monitor, Mr. Hodges has added
significantly to our insight into and understanding of related NASA programs
through careful planning, coordination with in-house effort, and encouragement.

I. . .

ix

VOLUME III

EXECUTIVE ROUTINE PRIMITIVES
AND

PROCESS CONTROL

SUMMARY
~"

The feasibility of partitioning an executive routine into primitive
controls, scheduling functions, and supporting supervisory software is shown.
The report outlines an approach to a functional partitioning that lends itself
wel l to automation.

Based upon general requirements for run-time support to arbitrary
processes, a basic set of executive routine primitives is defined. Using
an inductive approach, a state transition diagram is developed, thus forming
the basis for the development of a finite state automata to control all processes.
The state diagram is then used to derive a digital hardware logic device that
provides the necessary sequential processing. A stacking mechanism is
introduced to link the control hardware to certain software support procedures.
The stack is processed through the use of a hardware trap scheme for executing
procedures that have been stacked.

A software approach to mechanizing a comparable capability is devel-
oped. The method of depicting this approach is comprised of showing program
flow diagrams and high-level source language statements. The architectural
framework for specifying the software approach is taken to be the UNIVAC 1108
Multiprocessor System.

Finally a comparison of the two approaches shows that a hardware
implementation is practical and displays significant advantages in terms of
cost and system overhead. Although no explicit comparisons are given to
contrast the two approaches with respect to weight, volume, reliability, and
power consumption, the overwhelming simplicity of the hardware approach
is felt to obviate the need for detailed comparisons. The results are clearly
in support of a hardware logic design approach.

r

SECTION .I. INTRODUCTION

The supervisory aspects of controlling program execution with a
general purpose digital computer environment have become so complex that
not only is it now difficult to implement scheduling procedures that have
predictable effects, but it has also become difficult to establish design
require'ments and describe a control method that exhibits desirable features.
This complexity is, of course, an inevitable result of a tendency to want
more out of computing systems in terms of the total number of tasks com-
pleted in a given time interval. Since faster program development is also
desirable, systems have been further complicated by the addition of functional
responsibility in the area or" development support through program debug,
text edit, language translation, and file maintenance capabilities.

Relatively good success has resulted from recognizing that many .func-
tional responsibilities can be simplified through partitioning o r segmentation
into well defined and easily managed subfunctions. The purpose of this mono-
graphy is to outline an approach to applying partitioning procedures to the
supervisory function. The objective is to show simplicity in the methods in-
volved, and to analyze and compare several possible methods for implemen-
tation.

The following discussion ou.tlines the concept of a "process" as it re-
lates to the computer executive function. Based on this concept, the important
features of process "construction, "primitives, '' "control, "termination, ' I

and "monitol-ing" are discussed. Techniques for control implementation are
examined, and examples of usage are cited. The discussion ends with con-
cluding remarks and recommendations for further e€fort.

Implementation of the control concepts discussed in the report has
historically been accomplished through the application of software engineering
in order to design, fabricate, and test executive system programs that per-
form the required functions. Recent research and development has isolated
program control principles that are reasonably general purpose, and neces-
sary in all but the simplest sequential batch programming systems. The
report expands on these principles, and emphasizes a digital logic approach
to implementation; a software approach is also indicated.

TQ establish a frame of reference for the major points of interest that
follow, the concept of a process and the meaning of.construction of a process
are outlined.

A. Concept of a Process

The usual quantity of work referred to in discussions regarding compu-
ter systems is the "task. "User tasks" and "system tasks" have been accepted
as terms for describing the entities that an executive system deals with in its
supervisory capacity. A task will be similarly regarded in this discussion as a
specific quantity of work to be accomplished.

Most of the discussion, however, will be concerned with the sequence
of actions performed in order to complete a $ask. This sequence is referred to
as a llprocesslf and is discussed by Lampson /1/ and others /2/3/4/. It is im-
portant to note that a process may execute code from either system o r user
(application) programs, o r both, in a more-or-less arbitrary order. Since the
control devices of process-oriented systems may include those for stopping
process execution, code which is shared among several (possibly concurrent)
processes must be structured to support unsynchronized, multiple (simultaneous)
execution instances. Such a program is often referred to as reentrant in that
one execution instance can be suspended and another begun, both at (virtually)
any location in the code. With a multiprocessor system, literal simultaneity
is possible.

The definition of a "processfr can be extended recursively by also con-
sidering a set of sequential processes to be a process. Such a definition would
allow for (and require) a nested control capability. However, this discussion is
concerned only with the simpler definition since no generality is lost.

1 Lampson, B. W. : A Scheduling Philosophy for Multiprocessor Systems.
Comm ACM, V 11, N5, pp. 347-360, May, 1968.

'Dijkstra, E. W. : The Structure of "THE" - Multiprogramming System.
Comm ACM, V 11, N5, pp. 341-346, May, 1968.

3Wirth, N. : On Multiprogramming, Machine Coding, and Computer
Organization. Comm ACM, V 12, N9, pp. 489-498, September, 1969.

4Hansen, P. B. : The Nucleus of a Multiprogramming System, Comm ACM,
V 13, N4, pp. 238-250, April, 1970.

4

B . C snstructim

Process construction is the act of executing a set of procedures that
create a process. In its broadest sense, process construction consists of pro-
gram design and coding followed by translation to machine-executable code,
collection into a module that is mapped onto main (instruction) memory, input
to main memory, and creation and initialization of a block of main memory that
constitutes a set of state variables for control of the process.

For purposes of this discussion, a truncated definition will be sufficient.
It includes :

0 Collection and mapping,

0 Input to instruction memory, and

0 Process control block formations.

Collection is a gathering together, from several sources, of the various uncol-
lected routines constituting a set of process code. As the code is gathered, it
is mapped one-for-one word-wise onto some contiguous set of instruction memory
locations. Once collection and mapping has been accomplished, the code can be
written into instruction memory and a process control block (PCB) constructed.

Figure 1 shows a possible structure for a typical PCB /5/ beginning at
the ring pointer PCBRING. The contents of this block are for the most part self-
explanatory; table 1 defines these entries. (In the event that multiple processors
a re allowed to concurrently execute .common code from a given process, the entire
process must be reentrant. The PCB structure shown will not support this require-
ment. Although it is certainly of academic interest, this possibility is not con-
sidered further here.)

5The process control block discussed here is similar to the "Exchange
Package" discussed in /6/ and the "Job Area" of /7/.

'Reference Manual - Control Data 7600 "Preliminary Computer System, I'

Control Data Corporation Publication Number 60258200, Revision 02, 1969.

7Huberman, B. J. : Principles of Operation of the Venus Microprogram,
Mitre Technical Report MTR-1843, The Mitre Corporation, Bedford, Mass.,
1 May 1970.

5

Previousprocess I Nextprocess
PCBRING Processname

a l b l c l w l C PUnumber
1

Startentrv

4
Breaktmintaddress
Breskpointoperand I BPOtrapaddress

i Machineregisters

v PROCESSID

U
Status Word

c
s , o

FIGURE 1. PRQCESS CONTROL BLOCK

"

TABLE 1. PROCESS CONTROL BLOCK ENTRY DESCRIPTIONS

ENTRY

Previousprocess

Nextprocess

Processname

a b c

Priority

Startentry

Returnaddress

.._____ "" -~ ~~~~

Highmemory

Eowmemory

C PUnumber

Breakpointaddress

Breakpointoperand

Machineregisters

. ..

DESCRIPTION
. .

Pointer to the predecessor PCB on the ring.

Pointer to the successor PCB on the ring.

Unique name for this process.

Three bit process state indicator.

Relative protess priority.

Instruction memory address of the first instruction. *
Instruction memory address of next instruction in case process
activity is stopped; execution will be resumed at this location.
Initially has the value of startentry.

Largest instruction memory address associated, for protection
and access purposes, with tMs process.

Sma.llest instruction memory address associated, for protectior
and access purposes, with this process.

Hardware address of the processor unit associated, during
execution, with this process.

Instruction memory address which, if it becomes the argument
of an instruction fetch cycle, will cause an internal processor
trap to a predetermined instruction memory address specified
by BPAtrapaddress. **
Instruction memory address which, if it becomes the argument
of a datum fetch cycle, will cause an internal processor trap
to a predetermined instruction memory address specified by
BPQtrapaddress. **
A block of words reserved for saving all programmable
processor registers when process activity is stopped. Must
include all registers depicting procem state information.

Counter showing the number of unserviced WAKE primitives
invoked for this procesa.

~ .

* The exact meaning of dl main memory addresses is dependent on the details of
hardware addressing. The preliminary organization shown here is merely rep-
resentative. For instance, if data and instructions are separated a high and low
data memory address would be required; if a paged memory is used, the page
file map would be saved.

operating in a debug mode.
**These values would have meaning only when the associated processor is

At the time of construction, the values of a, b, and c, discussed in
detail below, are all set to zero, as is the case with Returnaddress, CPUnumber,
Breakpointaddress, and Machineregisters, while Startentry is stored in its
designated space for the life of the process. It should be pointed out that no
specific memory word size or processor register set is assumed; the organi-
zation of the PCB is, therefore, subject to optimization in a specific architectural
case. Also, the storage area reserved for PCB's is assumed to be protected
through definition of a set of privileged instructions (at least a "store-PCB"
instruction).

8

SECTION II. PRIMITIVES

In order to accomplish control of processes, a set of primitive opera-
tors, o r instructions, is defined. The exact effect of these primitives, when
invoked by a process, is discussed in the next section; the general effect, how-
ever, is to alter the state of a process through specific executive system action.
The states of all processes known to the system are kept current by recording
these values as three bit binary numbers in the appropriate PCB's. The names
used here for the primitives were chosen because of the intuitive thoughts evoked
by them.

A. Wai t

This primitive has no explicit arguments (parameters) associated with it.
It i s a command executed by a process when the process is executing and cannot
proceed until some arbitrary, requested event has occurred. The effect of this prim-
itive is to stop process action and thereby make the associated relinquished processor
available for assignment to another process that is ready to proceed. The implied
argument of this primitive is the "Processname" of the invoking process. Be-
cause no other arguments are recognized, it is not possible for process "A" to
keep another process, "B, I ' from proceeding by direct use of the WAIT primitive.

When execution of a process that has invoked a WAIT primitive is resumed,
it will continue at the instruction immediately following the instruction sequence
that invoked the WAIT. The address of this instruction is saved as Returnaddress
in the appropriate PCB by the WAIT mechanism. The WAIT mechanism also saves
all pertinent processor registers in the PCB and sets the values of a, b, and c to
indicate that the process is in a "waiting" state. Other WAIT mechanism functions
are discussed in the section on "Control.

B. Continue

When a process has placed itself in an inacti\.e state through a WAIT, it
can be resumed only by another (cooperative) process through use of a CONTINUE
primitive. This primitive specifies the name of the waiting process as a parameter.
The PCB for the specified process is located by use of its unique name (for instance,
by searching a hash-coded table that associates a pointer, such as PROCESSID in
figure 1, with the name); the process is then placed in a tfreadyTf state wherein it
may compete, on the basis of its relative priority, for assignment of a processor.

9

It is important to note that, prior to use of WATT, every process must
be assured that some cooperative process will invoke a CONTINUE in behalf of
the waiting process. Normally, certain system support routines in the form of
subrcutines or supervisor calls would be provided to allow a process to request
that it be continued for specific reasons. Examples might include completion of
an input operation, expiration of a specified time interval, granting of a request
for device assignment or storage allocation, etc.

C. Wake

A-fter a process has been constructed, it is in the "idle" state. In this
state, the process is prepared for execution but is not yet activated. The WAKE
primitive is the mechanism for causing a specified idle process to be placed in
the rrreadyrr state where it will have processor time allocated for execution.

When a process is ??idlef1 and a WAKE for it is invoked, the WAKE
primitive will cause the process "startentry, If stored in the PCB, to be copied
into the returnaddress space in the PCB. The WAKE primitive specifies the
object process name as an argunlent.

D. Stop

This primitive is invoked by a process that is in the T1runningl' state in
order to indicate to the system that it has completed its execution and wishes to
return to the idle state. -Once a STOP has been invoked, subsequent execution
instances occur only as a result of WAKE primitives invoked for this process.
Each such execution instance wil l begin at the process "startentry" saved in
the PCB.

E. Suspend

This primitive and its converse, RELEASE, are defined to enable a
process, "A, to stop and restart another process I'B. This capability is pro-
vided primarily for the purpose of stopping a specified process to enable it to
be examined intimately by some other process. From the point of view of the
suspended process, there is no discernible effect; it therefore has no knowledge
of having been suspended. While suspended, the process's data, instructions,
and machine register contents can be examined or modified dynamically.

While the uses of SUSPEND are many, only debugging and synchroni-
zation a re mentioned here. Several processes can be synchronized to the nearest
instruction by breakpointing and suspending until all processes have been suspended.
Then, upon release, they will be closely synchronized. In order to debug process
code or analyze algorithm failures, it is necessary to suspend execution non-
destructively to permit observation.

10

F. Release

The act of invoking a RELEASE primitive for a specified process will
cause the process to revert back to the state it was in at the time of the most
recent SUSPEND for the process (an exception is discussed below). For instance,
if the process was executing code at the time of a SUSPEND, a cancelling RELEASE
will cause it to continue execution where it was suspended.

G. Termination

The discussion has considered process construction and control. For
completeness, primitive controls are specified to allow a process to terminate
itself or for another process to cause its termination.

Self-termination can be accomplisfied by a process through an EXIT
primitive, while termination of a process by an external mechanism is accom-
plished through an ABORT primitive. Processes that are aware of an internal
anomaly may ABORT themselves also.

In effect, an EXIT will cause a process to be placed in the 'Wlerr state,
followed by release of main memory assigned for appropriate process code and
PCB residence. An ABORT has all of the effects of an EXIT with additional
capability for "post-mortem" main memory dumps and other terminal actions
to aid in debugging.

11

I

SECTION III. PROCESS CONTROL STATES

In this section, the use of system primitives is discussed through con-
siderations with respect to state diagrams. Also, an alternate form for the
state diagram is introduced in order to support the development of logic expres-
sions for process control by an executive system.

Many of the details related to logic techniques ar? considered to be
routine in the field of digital systems engineering. Similarly, many of the
historically-"software" concepts are routine to the systems programming field.
The (sometimes) tutorial nattbe of the discussions that follow has the major
purpose of introducing readers in each field to the concepts and techniques of
the other in order that more integrated systems will be appreciated.

The conventions used in the state diagrams developed here are standard
in that arrows are used to show transitions; the name o r symbol adjacent to
the tail of each arrow is the identifier for the primitive, o r input, which will
cause the associated transition. Given a particular state, certain primitives may
cause no state change. Also, certain primitives may not be valid. For instance,
in the rrready'' state, a WAIT primitive cannot occur. Such transitions as are
nonvalid, o r cause no state change o r action, are not shown to avoid clutter.

A. Compute Cycle

A process enters the domain of the state diagram to be developed through
process construction when the values of a, b, and c a r e set to zero in its PCB.
For this reason, the discussion begins with state zero. The normal sequence of
state transitions for a process is 'tidle"-"ready"-'trunning. This is shown in
figure 2. A process in an "idle" state (state 000) will go to the "ready" state as a
result of some other process having invoked a WAKE in behalf of the idle process.
In the "ready" state, a process competes for processor time. An executive procedure,
known as the "dispatcher, ' I examines a queue of entries representing all processes
in the ready state. Once the dispatcher determines a match between some process
and processor, it will "dispatch" the process through a special system primitive
which causes the processor to start execution of the appropriate process. The
process is thereby placed in the ('runningIf state. While a process is "running, 1'

it can invoke a STOP, thereby placing itself in the "idle" state again.

13

wake
ready idle

d = dispatch
p = preempt

I
/' \

I
/

d = dispatch
p = preempt k-2 /

I \
I

FIGURE 2. INITIAL STATE TRANSITIONS

14

The complete transition cycle I t "ready, "runningvf) will be
referred to as a "compute" cycle. Many processes can be satisfied by simple,
repeated loops through the compute cycle. Each time through the cycle,

0 an idle process would be waked up by another process
or the system,

0 processor time would be allocated,

0 the process would execute, and

0 a STOP would be invoked to delay progress until the next
compute cycle occurred or was needed.

B. The Work Variable

The diagram of figure 2, while satisfying many of the process control
requirements, is nevertheless inadequate. For instance, it is possible that
some event may occur causing a WAKE to be invoked while the affected process
is in the running state. This is shown by the dotted transition in figure 2. In
order to avoid the loss of such a WAKE, the state diagram is augmented to pro-
vide it with the ability to remember WAKES that occur while a process is not
in the I1idlerr state. This is accomplished through a state variable, "w, as
shown in figure 3.

The scheme operates as follows: Each WAKE increases the value of
!?wTf by 1 and each STOP decreases the value by 1. When a process invokes a
STOP, a "testing" state is entered wherein the value of trwrr is compared to zero,
If T r ~ l f is greater than zero, it means that some event requiring processing has
occurred, and the process is returned to the running state at the start address
to execute another pass through the compute cycle. If r r ~ " is zero, the process
is placed in the "idler1 state as shown /8/.

The state variable, I1w, is located in the PCB and can be initialized
during process construction to any value. If it is initialized to zero, the normal
compute cycle will occur as discussed above. If it is given a positive initial
value of, say, n, the first n STOPS will loop through the testing state and back
to the running state thereby effectively ignoring the first n STOPs. This is a
useful capability that aids the programming of initialization for certain cyclic
processes for the first (n) time(s) the process enters the running state. No con-
sideration has been given-in this report to possible uses of initializing r r ~ " to a
negative value; only non-negative values are treated properly in the state diagrams
shown.

8The interpretation of vlwfr as a semaphore /2/7/ is valid where STOP is
similar to Dijkstra's rrPrt operator and WAKE is similar to IrV.

15

FIGURE 3. REVISED STATE TRANSITIONS

16

The state variable, 'k, has several useful side attractions that result
from its role in the control diagram. First, the instantaneous value of r l ~ " i s a
count of the number of WAKE primitives that have not been "serviced" through
dispatching and subsequent processing. In the special case where, as a result
of cooperative process action, a process is "waked up" periodically, say every
10 milliseconds, to perform some calculation, the value of ' W r can be measured
by the system to determine whether the calculations a re lagging behind. If, be-
cause of a low relative priority, the waked-up process is not dispatched before
the next WAKE, the r ' w , r r can be used as a direct measure of how far behind the
process is. rrwrr will be referred to as the process "work variable" because of
the apparently close relation to system workload.

C . Dispatching

Returning to the state diagram of figure 3 , it is seen that a process in
the "running" state can have its processor seized by the dispatcher for assign-
ment to a higher priority process. This is known as a "preempt" dispatcher
action. It causes the preempted process to be returned to the t'ready" state to
await a future "dispatch" primitive that will allow it to proceed. "Preemptf1 and
"dispatch" a r e special system primitives that can be invoked only by the dispatcher
which, as part of the process control mechanism, has privileged access to the
necessary control devices to assign processor time to a process.

Extending the discussion farther, it seems clear that the dispatcher
might be designed to dispatch processes with higher "w" values first, all other
factors (such as priority) being the same. If l lwll is interpreted as a measure of
work scheduled for a process, then the sum of all rrwrr values over all processes
known to the control system can be thought of as an indication of the total scheduled
work for the system at any given time. With this interpretation, the "system work-
load" can be measured as a function of ?lw. t 1

In a system - such as certain industrial process control, mes-
sage switching, avionics, ballistic missile defense, air traffic control, airline
reservation, and other similar real-time systems - it wculd seem to be useful to
sample rW,rr dynamically. Analytical techniques applied to probability distributions
of sampled rtwrt values might then be used to develop feedback scheduling and dis-
patching algorithms to dynamically optimize system performance under varying
workloads.

17

D. Cooperative Processes

We have thus far developed a scheme that shows the relation between
WAKE and STOP through the introduction of the concept of a compute cycle and
the process work variable, "w. This scheme is particularly applicable in the
case of cyclic o r repetitive processes such as those found in all computer con-
trolled real-time systems. It is necessary to incorporate an additional pair of
primitives to support control of a process that is "waiting" for some requested
event to occur before it can proceed.

Consider the case of a request for data input. Unless the data are
already buffered in main memory at the time of the request, it would be neces-
sary in most cases to queue the request and place the requestor in a waiting
state until the data have been input and converted for use. A similar situation
arises in the case of requests for main memory space, peripheral devices,
timed delays, etc.

Figure 4 depicts a "waiting" state which is entered by a process that
invokes the WAIT primitive. When the condition necessitating a WAIT has been
eliminated, the process is placed in the ready state through the use of the CON-
TINUE primitive. When the dispatcher assigns a processor, control resumes
at the "returnaddress" saved in the PCB by the WAIT mechanism.

It is interesting to consider what would happen if an "unauthorized"
CONTINUE were invoked as a result of either a hardware o r software error.
The waiting process would, upon entering the running state, assume erroneously
that the request had been granted and proceed to cause a further promulgation of
the original failure - possibly beyond the point of recovery if this point had not
already been reached.

One way of preventing such a CONTINUE would be to build into the
WAIT mechanism a procedure for generating a unique "key. I ' This key would be
made available to the procedure authorized to invoke the corresponding valid
CONTINUE. Then, whenever a CONTINUE i s invoked, the key supplied by the
invoker would be matched to the unique key generated at the time of the WAIT.
Mismatches would determine program errors o r system failures. The details
of th i s form of validity checking will not be considered further in this report,
but they certainly form the basis for further examination and definition.

E. Suspended States

The final alteration to the state diagram is an extension of figure 4 to
include optional "suspendedf' states. The mspended states are companions to
corresponding nonsuspended ("waiting, "ready, "idle,) I and "runningT') states
and are provided as a mechanism for stopping the progress of a process. The

18

\
running testing w

3
/ w4w - 1

FIGURE 4. EXTENDED STATE TRANSITIONS

effect of a WAKE and CONTINUE primitive is preserved through an appropriate
transition from "idle suspended" and "waiting suspended" to "ready suspended.
Figure 5 shows the complete state diagram.

Suspended states can be associated with a special mode of processor
operation which will support extensive observation by external processes of
processing activity. This mode might be referred to as the "debug" mode.
Figure 5 shows process state changes with regard to certain debugging primi-
tives, namely I f suspend" and "release. Other debugging primitives that influ-
ence processor states, but are unknown to processes, can be defined to enable
the specification of a comprehensive automatic debug program as part of an
executive. These concepts are properly discussed elsewhere. For the purposes
of the present discussion, "suspend" can be considered to be equivalent to the
(manual) depression of a console r'stopf' button in a single processor configuration;
"release" is equivalent to a trgo'' button depression. In a multiprocessor configu-
ration, the concepts assume more meaning in that actions equivalent to rrstopl'
and rrgoll can be carried out under program control on one processor to 'Tsuspend7'
and v7releasef1 a process executing on another processor. A s was mentioned be-
fore, these primitives will have meaning only when the affected processor is
operating in the debug mode. While in this mode, special logic sequences can be
invoked to accomplish single-step and phase-step processor operation, register
content readout and alteration, breakpointing, etc. The associated fully-integrated
processor/process capabilities are not discussed here.

F. Process Termination

The diagram of figure 4 contains the essential ingredients of process
control and will be the basis for discussion in subsequent sections. However,
it does not include the two termination states into which EXIT and ABORT take
a process. The reason for not showing the termination states is that they over-
complicate the diagrams and add little to the concept. EXIT and ABORT are
considered, however, in the implementation schemes to be developed.

EXIT can be invoked only by a process in the running state in its own
behalf. The primitive wil l place the process in the "unload" state and activate
a system unload procedure to return all of the resources allocated to the pro-
cess. In addition, all incomplete activities, such as input and output, initiated
by the process will be completed by the system. An ABORT will cause the
specified process to be placed in the "post-mortem'' state and wil l activate a
system abort procedure. This procedure will perform various debug functions
such a s dumping main memory at machine registers. Upon completion, the
abort procedure wil l invoke an EXIT, thus causing the process to be unloaded.

20

w 4 w+l

r

running
suspended

3

d = dispatch
p = preempt
r = release
s = suspend

FIGURE 5. FINAL STATE TRANSITIONS

21

G. Example of Usage

Before proceeding with a discussion of implementation concepts, a
specific programming example is offered to show the use of WAm and CONTINUE.
Shown below is an "intuitive-ALGOL" source-form listing of two cooperative
procedures. One, named "free, is intended to illustrate a procedure for finding
and allocating to the caller a block of contiguous main-memory words. It is a
function that returns the address of the block to the caller; the caller specifies the
size of the requested block as a formal parameter. ''Putback'' provides the means
whereby a caller may return a previously allocated block to the system. In this
way, blocks which a re no longer needed by the caller are made available for allo-
cation to future callers of "free.

"""" .
procedure free(request. size)

then begin
look: - if another. block

-
look. at. size;

remove(b1ock. address) ;
- if too. small then gg to look; - "

found :

scan:

- if too. big - then insert. block(excess. block. address, excess. size);
free:=block. address;
return. to. caller
end

queue(request. size, processid, caller. return) ;

get(b1ock. address, caller. return);
gg - to found

-
- else begin

> wait;

" end.

""""

procedure putback(b1ock. address, block. size)

then begin
- if more. queued. requests
-

- if this. queued. request. size block. size then go to scan-
dequeue(this. queued. request) ;
fix. block(b1ock. address);
fix. size(b1ock. size)
continue@rocessid) ;
if block. size = 0 then return. to. caller;

end.
insert. block(b1ock. address, blocksize) ;
return. to. caller;

"'

go to scan
- -
"

22 """"

llFreell is an algorithm that locates a block by looking through a list o r
map of available storage blocks until em large enoclgh to satisfy the caller's
request is found. When one is located, it may be too big, in which case the
excess sub-block is placed back in the map by a call to "insert-block. In case
no available block is large enough to satisfy the caller's request, the size of
the requested block, along with the caller return address and a pointer to the
caller's PCB, is queued to allow the system to proceed. Until the request can
be satisfied, the process remains in the waiting state.

"Putback" has the job of updating the map which specifies available
*rage so that llfreell is made aware of the returned space. lfPutbackll first I

scans the queue of requests to determine whether the block being returned will
satisfy some waiting request. If a request can be satisfied, the waiting process
is CONTINUED. Tutbackfl continues to scan the queued requests until there
a r e no more requests to check, o r all of the returned space has been used to
satisfy queued requests. When scanning is complete, the remirining space is
inserted in the storage map.

Several interesting points can be deriued from the example. The most
important is the implication that, in a multiprocessor system wherein the example
code can be shared among several processors simultaneously, the code must be
reentrant. The code of "free, If for example, represents part of the mechaniza-
tion of all processes having queued requests. This is an important example of
code and data sharing.

The reentrant coding requirement could be eliminated by provision of
duplicates of the code as part of the mechanization of every process. Since the
algorithm is likely to be rather complicated due to "garbage collection" and
memory map characteristics, the cost in storage space would probably be
accessible to (shared by) all processes. This requires some form processor
lockout capability such as "Test and Set" /1/9/. This same lockout capability
could be used to obviate the need for multiple copies of man-reentrant code but
would require special attention to process coding. Reentrant code combined
with Test and Set applied to the global data is preferable.

'Blakeney, G. R. , Cudney, L. F. , and Eickhorn, C. R. : An Application-
Oriented Multiprocessing System - Design Characteristics of the 9020 System.
IBM Systems Journal, V6, N2, pp. 88, 1967.

23

SECTION m. IMPLEMENTATION

This section outlines an implementation of the concepts of process
control discussed previously. Two design approaches a re developed for
comparison purposes. The first is comprised of a combination of hardware
and software; the emphasis is on digital logic. The second is predominantly
software. While the hardware design is comprised of digital logic, and the
software is depicted as a high-level language, it is important to realize that
stored logic could replace any (or all) of the implementation media. This
fact confirms the observation that there are no longer well-defined demarca-
tions in the selection of implementation metlia for executive control. Such
selections must be based on appropriate trade studies that include preliminary
designs such as those discussed below.

Before depicting the actual implementation, it is necessary to discuss
some concepts and techniques of general use as digital design aids. The
applicability of transition matrices and the evaluation of control variables is
outlined briefly to support the design rationale that follows.

A. Transition Matrix

The information shown in a state diagram can be represented in other
forms that are often more compact. For the purposes of further discussion, an
example is shown in table 2. This matrix depicts the important state transition
aspects of the figure 4 state diagram with the exception of ffd" and Ifp. If (All
future references to state diagrams developed in this report will imply that of
figure 4 unless specifically indicated otherwise.) A state diagram is considered
to be /lO/ll/ a representation for a finite state machine that has inputs, rep-
resented in these discussions by the primitives, and outputs, represented in
report examples by increasing, decreasing, or doing nothing to the work
variable. Table 3 shows an output matrix that could be used to control the
value of "w. If

10
-: Minsky , M. : Computation: Finite and Infinite Machines. pp. 21, Prentice-
Hall, Inc. , Englewood Cliffs, N. J . , 1967.

11-: Chu, Y.: Digital Computer Design Fundamentals. pp. 375, McGraw-Hill
Book Company, Inc., New York, N. Y . , 1962.

25

TABLE 2. STATE TRANSITION AMATRE

11

X

11

X

01.

F Should not happen. (Could be used to flag software/
hardware error.)

X Cannot logically happen. (Could be used to flag
hardware error.)

Indicates state change.

Y Final state depends on w.

26

TABLE 3. WORK VARIABLE CONTROL

Primitive

STOP
. ~ ___

WAKE

WAIT

CONTINUE
"

Matrix element values:

-1 Implies decrement w.

0 Implies no change in w.

+1 Implies increment w.

X, F Same as in previous figure.

11

X

+1

0

27

I

The "Testing w" state, in effect, does not exist as far as processes are
concerned; it acts like a pseudo, o r "transient, (I state in that while the machine
is in this state, it is merely in the process of deciding, on the basis of "w, If
whether the required transition should be "lO"-to-"lO" or "lO"-to-"OO. If When
a STOP is invoked (in the running state), w will be decremented and tested
immediately to determine which transition to make. This could have been
indicated in the state diagram as shown in the illustration below.

w - w-1: w=o

FIGURE 6. ALTERNATE FORM FOR STOP TRANSITION

WAKE is the only valid primitive that could conceivably be invoked
while a process is in the "Testing w'l state. There are several alternatives
to controlling this situation. The simplest way would be to have an access
lock placed on the value of w until i t has been tested. After the proper transi-
tion has been made, the access lock would be removed. The only drawback
to this scheme occurs in those cases where the process is placed in the idle
state, only to have its state changed immediately to "ready" thus causing a
large amount of work to be required to place it back in the running state. This
problem arises only in a multiprocessor/multiprogramming environment, of
course.

An alternative to the above scheme would be for each machine to set
a control line indicating that it is executing a process in the "Testing w"
state. Al l other process control machines would sense this line and delay
further processing until the line is reset. For the particular conflict we are
considering, this alternative has the advantage that no value access lock
mechanism is required, the control line accomplishing the necessary control.
However, the disadvantage of the first scheme is still inherent. This report
wil l assume the second scheme although it is not necessarily best, and there
may be other schemes. The shown in table 2 could be used to indicate
that the "Testing w" control line should be set.

28

The llX's, shown as elements of both matrices, indicate combinations
of input and state which are not valid by definition. These combinations would not
normally go unrecognized, however, because of their value in detecting e r r o r s in
a logic circuit designed to function like the finite machine. For this reason, a
second output matrix might be constructed to control the detection of this class
of e r r o r (caused by an input [e. g. , primitive] or the machine [e. g. , state] itself).

An "F" is used as an element to indicate those combinations which,
although they could occur, would indicate another (possibly different from
the "X") type of error . The relation between WAIT and CONTINUE is
one which would be prohibited, by programming standards, from existing be-
tween more than one pair of processes or procedures at any given instance.
Another, perhaps more precise, way of looking at this is to state that every
WAIT has one and only one logically valid, matching CONTINUE. Also, every
CONTINUE will always "unlock" (match) one and only one waiting process.
An e r ro r would occur i f some unauthorized process invoked a CONTINUE when,
in fact, either the object (process) of the CONTINUE is not waiting o r the event
being waited upon has not occurred. The "F" indicator will flag the first of
these two possible mismatches; a key of some sort would be required, as dis-
cussed previously, to flag the second.

B. Control Variables

In order to develop a valid logic device to represent the finite machine
of the process control state diagram, it is necessary to define several output
variables, each having an appropriate output matrix to define the variable
values. The form shown in tables 2 and 3 is awkward for space reasons
and a tabular form, sometimes called a "standard basis" /12/ truth table,
is preferred. Table 4 is a standard basis for representing all combinations of
A, B, C and D (from the transition matrix) in the first four rows. The
column numbers at the top indicate the sixteen possible elements of the
matrix of table 2. Although it may be confusing, these numbers are referred
to, in conformance with generally accepted policy, as "state numbers. If Thus,
state 5 represents the occurrence of the WAKE primitive (B = 0 , A = 1) when
a process is "ready" (D = 0, C = 1).

12-: Digital Systems Engineering: pp. 1.28, Lecture Notes, 5th Edition,
RCA Institutes, Clark, N. J. , 1965.

29

TABLE 4. EXAMPLE STANDARD BASIS

VARIABLE STATE

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7 8 9 0 1

A
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 B
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 D
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 c

-1
X
F
N
G
H
Y
w
V

I

0 0 0 0
0 0 0 1
a 0 1 -
0 - 1 -
b - l -
1 0 0 -
1 1 0 -
0 1 "

1 0 1 0
- 0 - 0
- 0 - 1

1
0

- 0 - 0
- 1 "
- 1 "

" -
- "

X:
F:
N:
G:
H:
Y:
w:
V:
-.

Invalid - flag hardware error.
Illogical - flag hardware/software error.
State change (0 in transition matrix).
New C when N = 1.
New D when N = 1.
Indicates entering Testing w. Set appropriate control line,
Change value of w (Test and Set could be used to gain access).
Increment (= 1) or decrement (= 0) value when W = 1.
Don't care.

Note: "a" is a 1 if and only if W = 0 when tested.
'fbff is a 0 if and only if W = 0 when tested.

- -

30

Each row below the top f a r represents an output variable whose
possible (Boolean) values are shown at the intersections with the different
states (columns). The X condition defined in the transition matrix and dis-
cussed above is an example of a condition that must be detected. Therefore,
X is defined as an output variable whose value will be ''1" (Boolean True) for
those combinations of A, B, C and D which are invalid; i. e. , cannot logically
happen. Therefore, a lllff is placed at the intersection of the X row with states
0 , 2, 4, 6 , 12 and 14. All other state numbers are valid; X is therefore
(Boolean False) for these states.

Notice that for some state-number/row-value intersections in the
standard basis, a 1 1 - 1 1 is shown. If a logic circuit is developed to provide
values for all of the output variables, and the value provided for X turns out
to be I l l , the values of all other output variables are useless since some
e r ro r has occurred. For this reason, 'l-lf is used to indicate a '?don't care"
value for certain variables at certain state numbers. Furthermore, if a
don't-care condition exists for a particular variable, it does not matter
whether the logic circuit produces a 110" or a "1" for that variable in that
condition. It is common practice in digital design to take advantage of
don't-care conditions in order to minimize or simplify the overall logic
circuitry. Simplification often occurs when a specific circuit is intentionally
designed to produce, say, a "1" for certain don't-care state numbers.

C. Sum of Products

A simple procedure is available for the derivation of equations to eval-
uate the various output variables for all combinations of inputs. Referring to
the standard basis, it is clear that X must be "1" when A, B, C and D a re
"0, I' A, C and D are ''0" and B is "1, I ' etc. It must be "0" for all other
combinations.

Taking state 0 first, it is clear that if the False (''0") A, B, C and D
values are negated and "ANDed" (logical product) together, the logical result
is 1'1'' (True). State 1 can result in a rrl" if the False values of B, C and D
are negated and ANDed together with the True value of A. State 3 suggests
ANDing a negated C and D together with A and B, and so on. The input stan-
dard basis thus provides an indicator for obtaining the desired logical values
for all output variables.

31

The logical entities thus formed are sometimes called "minterms" and
are designated by a lower case trmr' subscripted by the appropriate state number.
Thus, /13/

m = A B C D

m = A B C D

m = A B E ' D

m = A B C D

m , = X B c D

0

1

2

3

""

-"

"

m = A B C D -
6

m = A B C B 7

are the first eight possible minterms. It is clear that each minterm has a True
Boolean value provided the variables A , B, C and D have the values depicted in
the standard basis for the subscript state number. In fact, it is also clear
that for all combinations other than those of the appropriate state number, a
given minterm will have a False value. That is, mi is ''1" if and only if the
variables A , B, C and D have the values associated with state i.

Therefore, X can be evaluated by use of the expression

X = m + m + m + m + m + m
0 2 4 6 1 2 14

This sum of products forms the basis, therefore, for a computer program or a
logic circuit to evaluate X. Expressions can similarly be derived for all of the
other output variables.

Considerable simplification of expressions such as that shown for X
will accrue from factoring and the application of deMorgan's Theorem. Addi-
tional simplification can result from the use of Karnough maps, Mahoney maps,
and other derivatives of the Venn diagram. These simplifications are "tricks
of the trade" for digital systems designers and are not discussed here although
the serious systems programmer should master at least one of the set of
techniques (see, for example, reference 11). Figure 7 shows a somewhat
simplified logic circuit that will evaluate X using AND and OR gates. A map
is also shown with minterms shaded according to the standard basis. The
value of X can be used as input to a flip-flop to interrupt further processing
or to cause a trap to a fault diagnosis program.

13 The logical product is denoted by simple concatenation; the logical sum is
denoted by ? I + . 1 t 'V'' is taken to mean "not V.

32

C

-
D

AND X

1
10 I 11

j X = K E + A C

I = A (E + C)

D

819
- . - - - -

C C

FIGURE 7. EVALUATION OF X

33

D. Processor Control

The output variables shown in Table 2 a re defined in that table. The
justification for each of these variables is clear from the discussions since
they were all derived from the matrices of tables 2 and 3. Several additional
input and output variables are required in order to enable a complete definition
of the process control mechanism. These variable requirements are derived
from further consideration of the dispatching function and processor state
transitions.

1. Dispatcher. Previous discussions have mentioned a dispatching
function without going into detail a s to what it does. While i t is not desirable
to explicitly define a particular dispatcher, its main features can nevertheless
be outlined. The dispatcher is an a l g o r i t h or se t of rules for matching a
process in the ready state with a system processor. Once a match has been
made, the process can begin executing. Since there will normally be more
than one process in the ready state, the dispatcher is actually an algorithm
for deciding which "ready" process to dispatch and then making the appropriate
change to the state of the affected processor and process to start execution if
a process is dispatched.

a. Ready List. The dispatcher represents a portion (sometimes
large) of system overhead. It should therefore be able to operate efficiently.
It cannot be defined efficiently if it examines the various PCB's in the system
to make its decisions. For this reason, a separate list containing an entry for
each process that is not idle or waiting is usually defined. Entries in this list,
often referred to as the "ready list" or "switch list, ' I contain the addresses of
(pointers to) the PCB corresponding to their associated processes. This list
effectively isolates the dispatching algorithm from the order and structure of
PCB's and thereby makes it possible to order and structure the ready list to
enable optimization of the dispatching algorithm.

In order to construct the ready list, a procedure is necessary for the
creation of an entry for a specified process and insertion of the entry into the
ready list at the appropriate place. Each time a process makes the state
transitions "idle-to-ready'' and "waiting-to-ready, If this procedure must be
invoked by the process control mechanism. Conversely, a procedure must be
defined and properly invoked to remove an entry from the ready list and destroy
it.

When a process is running, it may remain in the ready list for conven-
ience, but with its state indicator showing that it is running instead of ready.
An alternative is to maintain two lists: a ready list for processes in the ready
state, and an active, o r running, list for processes in the running state. If

34

this scheme is used, the "insert" procedure discussed above inserts entries
in the ready list as mentioned; but the flremove't procedure removes entries
from the running list. In either case, a separate procedure is necessary and
sufficient for removal and insertion, since RELEASE and SUSPEND (involving
a different pair of procedures) are not part of the current discussion.

Based on the discussions thus far, it is evident that a variable is re-
quired to trigger activation of the dispatcher as a result of primitive operations.
Furthermore, a variable is necessary to signal whether an entry must be placed into
or removed from the list(s). The dispatcher, of course, or some other proce-
dure, such as a priority control procedure , may manipulate and reorganize
the list(s) .

b. Dispatcher Overview. It was mentioned previously that
special privileged primitives are required by the dispatcher to dispatch and
preempt processes. Through the proper design approach, both of these prim-
itives could be incorporated into a single primitive to switch execution from
one process to another. In a single processor multiprogramming system this
approach would perhaps be adequate. However, in a multiprocessor, multi-
programming system, a process might stop when there is no other ready
process to which a switch can be made. For this reason, and because of
the greater inherent flexibility, the two controls are kept separate in this
report.

Figure 8 shows an overview to a processor allocation scheme showing
the various functions of a dispatcher. Control is passed to the dispatcher
through a mechanism referred to as a "trap. This mechanism, a list-driven
processor capability activated by the process control mechanism, is discussed
below under Trap Processing.

The basic functions of the dispatcher as shown in figure 8 are self-
explanatory. A given processor is considered, for simplicity, to have only
two possible states. These are referred to as "executing" and "stopped. I t

When a processor is stopped, it can be placed in the executing state only by
a DISPATCH primitive. This primitive specifies an identifier for both the
processor and the dispatched process (Processid in Figure 1).

When a processor recognizes a dispatch signal, it will:

0 Load the address of the associated PCB from a pre-
specified memory location,

0 Load its volatile registers from the process-associated
PCB machineregister space,

0 Store its identification in the CPUnumber space of the PCB,

35

Return from

processing

r - - - - .- - 1
I Selection I

I Algorithm !- - - - - -

Get highest
priority ready

I I process
L""""l

V
no

Pick the lowest

such process

Preempt Stops the I
the lowest associated I

priority I executing I
process I processor I

I- - '- .- " " --"

I

L - - - _ _ - _ _ _ _ J

Dispatch
ready process
to processor
just stopped

Dispatch ready
process to "some"
stopped processor

Set identity of trap
processor to be
CPUnumber of
some stopped

processor or of the
processor executing
the lowest priority

process
I

I

FIGURE 8. DISPATCHER OVERVIEW

36

0 Load the memory address register from Returnaddress
in the PCB,

0 Start an instruction fetch cycle.

This sequence of operations is referred to as a dispatch cycle. The dispatch
signal is transmitted to the affected processor by the processor executing the
DISPATCH primitive. In the case where the affected processor is the one
executing the primitive (i. e. , it is executing the dispatcher), no processor-
to-processor communications is required and the primitive is not recognized
until trap processing is complete.

A PREEMPT primitive specifies the identification of the affected
processor. When the processor recognizes a preempt signal, it will sequence
through the preempt cycle a s follows:

e Save its volatile registers in the PCB machineregister
space for the process it is executing,

0 Erase its identification from the PCB CPUnumber
space, and

0 stop.

2. Trap Processing. A trap is a transfer of processor control to
a specified location as a result of some event or condition requiring special
attention. From the viewpoint of process control, trap processing offers a
flexible and efficient means of initiating certain procedures, such as the
dispatcher, or the "remove" and "insert" procedures that operate on the
ready list as mentioned previously.

Each processor is required to have a one-bit trap designator register (TDR)
indicating whether it is the trap processor or not. Only one processor in a
multiprocessor, multiprogramming system will be designated at any given
time as the trap processor. The selection and designation is controlled by
the dispatcher as shown in box 7 of figure 8. Selecting in this Way, on the
basis of processor state and process priority, insures that trap processing,
a system overhead item, interferes only with the lowest priority process and
then only if there is no stopped processor.

Traps are implemented by each processor upon recognition of an event
requiring software support. The mechanism consists of first placing a pre-
specified main memory location (entry point of a support routine) in a list that
is normally treated as a first-in-first-aut (FIFO) stack; and then setting a

37

I

trap control line. The stack beginning address and ending address are stored
either in common main memory or local scratch-pad memory for each pro-
cessor. Also, the first word in the stack is reserved for the location of the
first unused stack word.

A t the completion of an instruction sequence, all processors match
(by use of a logical product) the trap control line (TCL) with their trap desig-
nator register; a resulting rrl" will cause the designated processor to access
the FIFO stack for the trap instruction fetch address (a policy may be invoked
to save certain machine registers also). The trap control line is not reset
until the trap stack is empty. Upon completion of the processing of each trap,
the trap processor must check to see if i t is still the designated trap processor,
since the designation may have been changed during processing. Also, a trap
processing line (TPL) must be provided to prevent a newly designated proces-
sor from taking action during trap processing. The need for this is dictated
by the requirement in the reported approach to maintain the FIFO order.
Perhaps this requirement could be relaxed by a different approach. To
complete the scheme, it is necessary to provide a trap stack access control
capability to lock-out access by other processors (attempting to place a trap
entry on the stack) when the designated processor is removing an entry.

In summary, the trap processing discussion shows a need for the
following controls:

0 Trap designator register (TDR) ,
0 Trap designator register set line (TDS) ,
0 Trap processing inhibit line (TPL) ,
0 Trap control line (TCL),

0 Trap stack and manipulation capability, and

0 Trap stack access lock-out capability.

3. Processor States. In order to show more clearly the relation-
ship between processes and processors, the effect of control signals and
trap processing is displayed in the state transition illustrations of figure 9.
Transitions are caused by

0 d - the dispatch primitive used to set processor
dispatch control lines through processor-to-
processor communications,

0 P - the preempt primitive used to set processor
preempt control lines,

38

sit

P

rft

tclotdr
""

a. State Diagram

e -

I

N -

b. Transition Matrix

X: hardware error or illegal use of primitive o r control signal
N: not used
-: not checked/not possible/don't care

FIGURE 9. PROCESSOR STATES

39

0 TCLOTDR - for each processor this is the logical product
of the trap control line and the processorls trap
designator register contents, and

0 rft - the return from trap processing instruction.

In these illustrations, "p" will cause a preempt cycle after which the
processor state is changed; "d" causes a dispatch cycle; and rrrftr' tests the
logical product of the trap control line level and the contents of the processor
trap designator register. When ''rft'' finds the product to be a Boolean true,
it forces the transition to either rrterr or "tsrt so that the corresponding ''err and
r r ~ f ? states become transient states in this case.

The symbols "p" and "d" play a dual role in that they are interpreted
as either executed primitives or control line contents. In the case when a
processor executes a "p" or "d" primitive, the control logic for that primitive
is invoked. These primitives provide, as arguments, the identification of the
affected processor. In the case of 'Id, the identification of the process to be
executed is also provided as an argument.

When a processor recognizes that either its "p" or "d" control line is
at the rr17f level (these lines might be checked at the end of each instruction
sequence), the control logic for processor state transitions is invoked. Two
cases (one with two subcases) must be considered in the design of the control
logic :

0 Case 1:

0 Case 2:

0 Case 2a:

The processor has received and recognized a
''1'' level on either its "p" o r "d" control line;
in this case, its processor state transition
control logic is invoked. This logic then in-
vokes the process control state transition logic
(to be developed and depicted in figures 10 and
12) if the initial processor state was "executing"
(in the case of a recognized "p") or "stopped" (in
the case of a recognized Ild'').

The processor has fetched and must execute a
"p" or "d" primitive; the primitive logic verifies
that the primitive is not an illegal instruction.
Then, two subcases are considered:

The "p" or "d" primitive argument processor is
not that of the cognizant processor; in this case,
the argument processorfs f'pl' or "d" control line
(whichever is appropriate) is set.

40

0 Case 2b: The "p" or "d" primitive argument processor is
that of the cognizant processor; in this case the
processor invokes its processor state transition
control logic. It then checks to see if it was
initially in either the trap/executing or trap/stopped
state. If so, the process control state transition
logic (figures 10 and 12) is invoked. In the case
of a Ifp, the logic shown in figure 12 wil l trigger
a "stop processor" function (F21). F21 would be
disabled in this case (only) by the processor state
transition control logic prior to invoking the process
state transition control logic.

When a processor executes a "p" or "d" primitive, a validity check is
first made to insure that the processor is in a trap/"anything" state. Since the
"p" and "d" primitives are regarded as privileged, they wil l be treated as
illegal instructions if they appear in an instruction stream while the processor
is in the executing state. Once this check has been made, the logic for these
primitives checks the CPUnumber (or processor identification) associated with
the primitive. If the processor's own identification does not agree with that
of the primitive argument, the "p" or "d" control line associated with the
argument processor is raised (set) to the lllff level. It is the recognition of
this "p" o r "d" control line which causes a subsequent state transition by that
processor.

If the processor executing the "p" or "d" primitive finds that i t is the
argument processor, it invokes the processor state transition control logic
as if it had recognized an associated control line set by another processor.

Although development of the control logic for processor state transi-
tions is beyond the scope of this report, sufficient detail has been presented
to clarify the impact of the "p" and "d" primitives on processors. Also,
the controls €or trap processing can be designed easily on the basis of the
discussion.

E. Hardware- Implementation

The state transition matrix shown in table 5 is an expansion of
table 2 to include the primitives for dispatching, preempting. exiting,
and aborting. Additional states should be included to show that a process
is terminated o r suspended. However, these additions expand the number of
standard basis states beyond the point where mapping for Boolean expression
simplification is trivial. The intent of this report is to indicate the necessary
considerations, and work through a reasonable subset of the required states

41

TABLE 5. EXPANDED MATRIX

Primitive

STOP

WAKE

WAIT

CONTINUE

DISPATCH

PREEMPT

EXIT

ABORT

I I

\ E D I
I

X, F, Y , 0 - Same as Figure 6.
T - Stack exit and mark terminated.
R - Stack abort and mark terminated.

42

-.

to show comparative results for both hardware and software approaches. It
is felt that the requirercents of table 5 accomplish this objective without
overcomplicating the techniques.

1. Logic Network. Table 6 gives the variable designations corres-
ponding to table 5 in a standard basis form. The maps in Appendix A were
used to derive the expressions shown in table 7. Note that don't-care
minterms are shaded in the maps as if they were "1s" to simplify expres-
sions. Figure 10 is a feasible logic network that evaluates the expressions
of table 7. Network elements are shown only for X, F, N and G to illustrate
the scheme.

Operation is initiated by input of a suitable (logic 11111) pulse, P, which
' goes into the R-S flip-flop (FF) on its set line, S. This FF is initially in

the reset (or clear) state wherein the output line Q is set to "0" thus disabling
the AND gates shown directly above it. A logic diagram of the R-S FF is
shown in figure 11. The Q line is labeled "l'.' to show that a lllff input on
the S line wil l cause this line to go to a !?l. It wil l stay this way until a "1"
is subsequently input on the R line to clear it (set it to "0 ' I) .

The Boolean values of A , By C , D and E are input to their respective
enable/disable AND gates so that, when P arrives, they wil l be applied, along
with their complement values, to the network to give values for X , F, etc.
Inputs A , By C , D and E are assumed to be logic levels that are held at their
value (possibly by'flip-flop registers). Therefore the outputs X, F, etc. and
their complements are also levels and wil l be held at their value from the
time P arrives until a re'set pulse is input on the R terminal of FF. A finite
time is required for the outputs to achieve their correct values after P
arrives. This time delay is a characteristic of the logic and is duplicated
in the dashed box labeled F2. The delay wi l l cause the start pulse, P, to
be delayed until the outputs are stabilized, at which time the P-pulse appears
a s an output on line P'. P' is used to signal that the network is ready to
supply values for X , F , etc.

2. Process Control Sequencing. The output variables have a
hierarchical or precedence relationship as follows: X,F,I ,Y,W,V,N,G,
H , S , My T, R, J. For instance, if X is ??l, If no other variables have meaning.
In this case, a trap to a hardware failure procedure is stacked and X is used
to stop the processor. If X is " 0 , an F value of "1" is allowed to cause a
trap to be stacked and the processor to be stopped. If both X and F are "0 ,
a "1" value for I will delay the processor until the Testing w control line
(indicated in succeeding figures by f fLff) is reset , whereupon E and D are
accessed again and processing cycled. When I is '?O, a Y value of lfl"
will cause the Testing w control line to be set, etc.

The reason for precedence is the need to place entries on the trap
stack in the proper order. Therefore, the actions necessary for process
control must be sequenced in the proper order. The actions are shown in

43

TABLE 6a. EXPANDED STANDARD BASIS

VARIABLE*

A

B

C

D

E

X

F

N

G

H

Y

W

V

S

M

T

R

I

J

STATES

0000 0000 0011 1111 1111 2222 2222 2233
0123 4567 8901 2345 6789 0123 4567 8901

0101

0011

1111

0000

0000

1110

"-0

"-1

"- C

-" C

"-0

"-0

""

"-0

""

"-0

"-1

"-0

"-0

0101

0011

1111

1111

0000

0110

O"0

1" 1

0°C

1°C

O"0

O"0

""

O"1

"-0

O"0

O"1

O"0

0--0

0101

0011

0000

0000

1111

0000

0001

a0 1-

0- 1-

b- 1-

100-

110-

01"

a0 1-

o-o-
000-

000-

010-

a0 11

0101. 0101

0011

1111

0000

1111

1000

-000

-111

- lcc

-0cc

-000

-000

""

-011

"00

-010

-00 1

-000

1111

0011

0000

1111

1111

10 10

-0-0

-0-1

"-1

"-0

-0-0

- 1"

-1"

-0-1

"-1

-0-0

-0-0

-0-0

-0-0

0101

0011

1111

1111

1111

1110

"-0

"- 1

"- C

- " C

"-0

"-0

""

"-0

""

"-0

"-1

"-0

"-0

>te: "a" is a 1 if and only if W = 0 when tested.
'13" is a 0 if and only if W = 0 when tested.
%" indicates terminated state.

rariable definitions are shown in Table 6b.

44

TABLE 6b. CONTROL VARIABLES

-
lymbol "

x .

F

N

G

H

Y

W

V

S

M

I

J

T

R

-

-

Definition
Invaiid - flag hardware error.

Illogical - flag hardware/software error.

State change (0 in transition matrix).

New D when N = 1.

New E when N = 1.

Indicates entering Testing w. Set appropriate control line.

Change value of w (Test and Set could be used to gain access).

Increment (= 1) or decrement (= 0) value when W = 1.

Activate dispatcher.

Remove (= 0) or insert (= 1) a ready list entry when S = 1.

Check Testing w control line. If Testing w control line is set ,
a delay occurs. After the delay, another access of the process
state is made and the control logic is invoked again.

Stop this processor after setting trap indicator or saving
machine registers.

Stack exit and set state to indicate terminated.

Stack abort and set state to indicate terminated.

Don't care.

~~

45

Variable

X

F

‘ N

G

H

Y

w

V

S

M

I

J

T

R

TABLE 7. SUM OF PRODUCTS EXPRESSIONS

Boolean Expression

ACE + ABCE + XEcD + XBE + ADE + BCDE

BCE + ABEG

D E + B + C

eE + ECE + BE

”_

”

I

BD + XE

ABC

AE +

”_

AC

”-

CDE + BDE + BEE + B e

CE +

AEDE

CDE + BEE

TiCb

”

ABC

46

A A 1
A

J

I EllABLE

r"-- "-1

F2

R

SET II = 0

SET ti = 1

FIGUFE 10. LOGIC NETWORK FOR PROCESS CONTROL

47
1

R

S

1

0

FIGURE 11. R-S FLIP-FLOP

48

table 8 a s a set of ordered functions. Notice that the functions at steps 10
(F10) and 11 (F11) involve setting the values of certain of the variables
previously evaluated by the network of figure 10. The network arrangement
for the variable N shows how this capability can be implemented. The net-
work reset signal R is applied through the OR-gate to the FF associated with
N, thereby presetting it to "0. The logic network will subsequently set it
to a "1" if and only if N's value is "1. I f When F10 or F11 is subsequently
activated, a ffllf pulse can be fed back to the network to insure that future
samples of N will be the desired value.

Software support procedures have been specified to take action on
certain conditions a s follows:

0 HWFAULT -
0 HSFAULT -
0 INSERT -

0 REMOVE -

0 DISPATCHER -

0 EXIT1

0 ABORT1

A hardware fault has occurred.

A hardware or software fault has occurred.

Insert an entry in the ready list for the
specified process.

Remove an entry from the ready list for
the specified process.

Review all ready processes for possible
changes in processor allocation and make
all necessary changes. Designate the
trap processor.

hitiate the removal of the specified process
from the process control domain and release
of all allocated resources.

The specified process has aborted, or has
been aborted by another process. Initiate
the appropriate diagnostic action (the least
should be a short dump). Preempt the
process if it did not abort itself.

These support procedures a re executed by the designated trap proces-
sor. If a particular application is completely predetermined with respect to
one or more of the above procedures, it would be possible to implement part
or all of them in digital logic o r microcode depending on the processor design.
It is not advisable, however, to assume that flexibility is not needed; the
open-ended approach is clearly superior for general usage.

Figure 12 gives a sequence control logic diagram that shows the
scheme for ordering the functions of table 8. Control is accomplished

49

TABLE 8. STEPS IN CONTROL SEQUENCE

50

STEP FUNCTION

0 Generate or receive start signal.

1

2

Fetch state of process.

Invoke logic of Figure 10.

3

IL = 1 implies When L = 0 , continue sequence at 5

F = l implies Stack HSFAULT; continue sequence 4

X = l implies Stack HWFAULT; continue sequence
at STEP 20.

at STEP 20.

STEP 0. Delay while L = 1.

6 Y = l implies Set L to "1. ' I

7 W = l implies Fetch w.

8 w v = 1 implies Increment w. Continue at STEP 12.

9 w v = 1 implies Decrement w.

10 Test w

11 Test w

(w = O) . S e t S = l , N = l , J = l ,
H = 0.

(w >O). S e t S = O , N = O , J=O.

12 N = l implies Store new state HG.

13

M = l implies Stack INSERT; continue sequence at 14

S = 1 implies Continue sequence at STEP 17.

STEP 16.

15 M = l implies Stack REMOVE.

16

T = l implies Stack EXITI. 17

Stack DISPATCHER.

R = l implies Stack ABORTI. Set J=O i f required. 18

-

19

X+F+J = 1 implies Stop Processor. 21

X+F+S+T+R = 1 implies Set trap control line. 20

Y = l implies Clear L to "0. I '

22 I
I

End of Sequence. Reset Flip-Flops.
Activate next instruction fetch cycle.

I I

I c
TO RESET R-S

FLIP - FLOPS

FIGURE 12. PROCESS CONTROL SEQUENCING

i STOP PROCESSOR (" 2

through propagation of a "start sequence'' pulse (labeled P) through the circuit.
The pulse is "steered" to the appropriate functions in proper order by pairs of
AND-gates that have been conditioned by network variable values and their
complements. Z is a disable/enable control to allow the processor control
logic (discussed previously) to determine whether a stop is to occur when
J = 1. The gate is normally enabled, but should be disabled when a preempt
occurs under some processor state conditions. Logic flow for the various
functions is outlined in Appendix B.

By way of summary, figure 13 shows conceptually the relation of the
logic discussed with the instruction decode circuitry. It should be clear that
some degree of parallelism could be incorporated; in the interest of simplicity,
no attempt has been made to show advanced concepts such as instruction over-
lap or stacks, pipelining, parallelism, etc. Also, consideration must be
given to several important questions such as: what policy prevails in the case
when the trap processor detects a fault condition; and, is it reasonable to
assume that the processor that detected a fault condition is the offender?

F. Software Implementation

The concepts of process control have historically been implemented
with software. The reasons are numerous; the foremost, perhaps, is that they
were not understood well enough to permit otherwise. Furthermore, formalism
of operating systems has only recently attracted attention and, as shown in this
report, can be extended to include many previously ill-defined programming
techniques .

Because the author is not aware that any precedence has been set in
the hardware implementation of process control, considerable attention has
been given to digital logic formulation and design. This is not to imply that
the hardware design techniques are in any way complex o r unique; quite the
opposite is true, a fact that tends to support the premise that such executive
control capabilities can readily be transferred from the domain of software to
that of hardware.

In order to emphasize the hardware approach by contrast, the design
concepts a re presented below in an abbreviated software form. The presenta-
tion is comprised primarily of high-level flow charts and source language
procedures. While no particular computer is felt to be specifically designed
to enhance the software approach, the UNrVAC 1108 Multiprocessor System /14/

141108 Multiprocessor System; System Description. UP-4046 Rev. 1,
UNrVAC Data Processing Division, Sperry Rand Corporation.

52

I

PROCESSOR
P‘ STATE

TRANSITION I CONTROL Clear TPL

L - LOGIC

- A ‘ 1

INSTRUCTION
DECODE ‘B’ 4)

“c,+’

P ,A Dl?Wli!!XS

L-q TRANSITION
STATE

P’ CONTROL
LOGIC Set L

Clear L 4

c

I

Set TCL “ - 4 k
FIGURE 13. LOGIC OVERVIEW

is selected as being representative of the class of system the discussion is
directed toward.

Briefly, the maximum configuration is represented by five processors
(three central processors and two inpt/output processors) and four memory
modules of 65,000 words (36 bits) each. Central processors, under executive
control, can signal one another through the execution of a special executive
(privileged) instruction known as the "Initiate Interprocessor Interrupt (111).
This instruction enables the executive, while being executed by processor A,
to interrupt processor B (#A) o r C (#A) for the purpose of assigning them to
the execution of arbitrary tasks. If the identity of A is known by the executive,
the identity of the interrupted processor can be determined.

Other specific executive instructions that are needed in the approach
to be depicted are:

e Load Storage Register (LSR)

e Load Processor State Register (LPS) and

e Allow All Interrupts and Jump (AAIJ).

LSR provides the means for setting the memory access boundaries to
those of a given process. LPS enables the executive to set the state of a
processor such that certain privileged instructions and capabilities wil l be
prohibited to insure system protection. Finally, AAIJ is the jump instruction
which, when used in conjunction with LSR and LPS, transfers processor
control to a process return address or entry point. In addition to the above
special instructions, each processor is equipped with a set of unique control
registers which can be used by the executive to save processor-related
variables such as identification, etc.

Because of the nature of the instructions available to implement the
software approach, the mechanisms naturally assume a form different from
that of the hardware approach. From the potential user's viewpoint, the
primitives become, in the software implementation, "executive requests, If

i. e. , "supervisor calls, I f rather than instructions. Furthermore, "preempt"
and "dispatch" are functions initiated directly by the dispatcher, and are
therefore neither instructions nor supervisor calls. And, finally, traps are
implemented by use of the I11 instruction. Except for these changes, the
process control concepts remain the same. While it is possible (and perhaps
even desirable) in the software case to follow a vastly different approach
than the scheme outlined in the hardware implementation, an intentional
effort was made to keep the two approaches as near the same as possible for
comparison purposes and to ease the transition for readers not heavily
oriented toward programming.

54

Figure 14 gives flow diagrams of the executive requests for primitive
functions considered in the hardware implementation (except PREEMPT and
DISPATCH). All primitives require similar testing in order for the validity
of the request to be checked. For this reason, they are organized as "set-up"
procedures; each primitive is a unique procedure that performs initial-
ization and then transfers processor control to a common procedure for
validation and action. Figure 15 gives an overview to the common procedure
"CONTROL. I t

CONTROL plays the role of the logic of figures 10 and 12. It eval-
uates the Boolean expressions, and tests their values in order to make branch-
ing decisions to perform the appropriate functions. In order to perform the
functions implied by HWFAULT, HSFAULT, EXIT, and ABORT, the entry
address and arguments for initialization routines for each of these procedures
is queued in much the same way as in the hardware case. REMOVE, INSERT,
and DISPATCHER calls are made directly because their frequency of usage
is assumed to be higher and their program size smaller than those of the
four queued entries.

In the case of a "preempt" or "dispatch" primitive, a unique code is
queued by the dispatcher along with the identification of the affected cpu.
Whenever entries are queued, CONTROL wi l l initiate an interprocessor inter-
rupt requiring the trap processor to service the queue. An overview to this
capability is shown in figure 16. Notice that the interrupted processor
checks first to see if it has a queued "preempt" or "dispatch" primitive. If
not, it is the trap processor and therefore executes the queued initiation
routines .

Figure 1 7 gives approximate source-form listings of the statements
that make up the various procedures. The listings are sprinkled with comments
to make them self-explanatory for the most part. The - own declarator w a s
used to approximate the need for all procedures to be reentrant since all
processors may he executing the same code simultaneously. Those procedures
not explicitly defined a re defined implicitly by context or by comments. See
reference /15/ for a description of ALGOL.

15Naur, P. , et al: Revised Report on the Algorithmic Language ALGOL 60.
Comm of ACM, V6N1, January 1963.

55

a.

ci
b.

(7)

ie[_i
rccessname

C.

(7 wait

d.

qunumber cpunumber cpunumber cpunumber

processid processid

c = false
b = false
a = false

c = false
b = false

\ cba /

processid

I

set
c = false
b = true
a = false

control
processid
cpunumber

I processid

I
1

set
c = false
b = true
a = true

!
control

processid
nil
cba

1

FIGURE 14. PROCESS CONTROL PRIMITIVES

e .

get
cpunumber

L r--
r - . get
' processid

"I"

L "1-

c = true
b = true

f.

fl processname

I

cpunumber

I processid

i

C J a = true I
c ontr ol

processid
cpunumber

FIGURE 14. PROCESS CONTROL PRIMITIVES (Continued)

(7 Crntro1 "0 Evaluate

r".? PCB Sate = H G Y P = X + F + J

+"
Q V I = PCB (3-

RETURN 6"-

'$= ,
0 S + F + T + R

I

FIGURE 15. CONTROL FLOW DIAGRAM

Jump
to

Process
Returnaddress

I11 - - - - - <:- .--I

0 cpunumber

Save
Process
Machine

-1

dispatch no

Machine
Register r

no

\

1

Get next

I
Specified

Procedure

Return to
Interrupted Location

FIGURE 16. INTERPROCESSOR INTERRUPT PROCEDURE (TRAP)

ox" hs!TAn 8 . 11. c ;
Integer procedure cpuld. IdhashMme;

comment epu and procesq are amsumad to be s p s c h l control reglatar
procedure control;

addresees contalnlng the lmpllsd Idantlflcatlon dah;

cpunumber:; z;
procedure atop &be

proceesld:= p~ofe~~;

b:= e;
control (cpunumber.process1d.I.b.c)

a: = false;

c:= w;
@ stop;

processid:= Idhashname (procesename);
procedure w&e (processname) b&

idhashname searches B hash-coded table correlating
processname wlth B ulllque proceseld;

cOmment cpuld can be II speclal functlm thst retumils the c p n u m b e r
cpunumber.= cpuld (proceasld);

b:= f a l s e ;
8:' true;

control (cpunumber.process1d.a.b.c)
@ w a k e ;

from the FCB;
-

c.= false;

cpunumber:= *; procedure Walt

processid:= pTocBBB;

b:= e;
a:= false;

c : = false;
control (cpmwnbr.procsss ld .~ ,b .c)
end walk

processid:= I d h a s h e (proceaaname);
procedure cmtlme (processnme)

cpunumber:= cpuld (processld);
*:= s;
b:= e;
e: = e:
control (epunumber,proceaeid.a.b.c)
@ contlnue;

cpuoumber:= *;
procedure exit b-

pmcessld:= ~TOCBBB;

-

P = fnlse;
b:= e:
control (cpunumber,proceseld,a,b,c)
c:= e;
@ eJt;

procedure abort (processname)
proceseld;= ldhashnnrne (p r o c e s s m e) ;
cpuaumber:= cpuld (processld);

b:= e;
a:= e;

nucleus

LI:

L2:

13:

u:

L6:
LO:

La:

LB:

L10:
L11:

LIZ:

L1:

L2:

60

x queue (hwfault,cpnumber.procaasldl;
I:= h . 6 . e 6 a.b.6.a;
I f f then queue (hsfault,cpunwber,pmcassld):
I : = a. E . a. e:

*
y:= a. b. c ;
If y * L:= 1;
w:= L. I + 8 . E ;
":= a.a + b + e ;

I:= +b.a..;

" _

a : = c . a . ~ + b . d . a + b . a . e * b . a ;

g:= E.* + 6.c.e + b.l;
h:= 6.d + i . 5 ;

If then go to L5;
&:= workvrrhble (proceaaId);
v:= L C ;

l f v s b- *
w:= w + 1: stnrawor*vulabla (procesa1d.w);

w:= w - I;
storeworkvarlable (process1d.w):

e @ L5 end;

procedure trap bedn in-er queue;

awn Integer cpurmmber. procesald;
procedure a w e . land. nextentry;

booleam array preempt. diepatch I 0:2 I ;
cpurumber:= 9;
prmeesId:= process;
if presmpt [cpunumber 1

b-
mve (cpmumber. pmcsestd); - If dlspatch I cpunumber I then go to L1;
ti&;
load (cpunumber. pmcesstd);
&!?T
end;
comment Jump transfers control to the proceas;

dlspatch 1 cpuwmber I then go to L1:
If queue = 0 Uleo T(lhllp;
nextantry (routlne.cpunumber.proceeeid);
rmUm (cpunumber.prccessld);
comment thle call to I queued rmtlne hM to bo "faked-In" mime

goto-
4 t rap

the langungs doean? permit thia exmt squence;

procedure dlapatcher be& . . . etc.

nucleus

FIGURE 17. SOURCE FORM STATEMENT LISTINGS
FOR PROCESS CONTROL

SECTION V. MONITORlNcr

Through the use of the PCB as a store for special data and main memory
addresses, a powerful monitoring and/or debugging facility can be implemented
as an integral part of the logic for process control. Three areas of usage are
discussed here in order to expand on the application of the control mechanism to
include program debugging , dynamic scheduling, and system stability measurement.

A. Program Debugging

A s shown in the PCB of figure 1, the Breakpointaddress provides
an address which is loaded, when a process is dispatched, into a special
processor compare register. Every instruction fetch address is compared
with Breakpointaddress; a match causes a trap to the associated BPAtrapaddress.

Breakpointoperand is similar in that it is also loaded into a special
processor register. The effective address for all operand fetches is compared;
a match causes a trap to BPOtrapaddress. In the case of post-indexing, every
address in the (possibly infinite) sequence is compared.

Other parameters could be included in the PCB to facilitate capabilities
such as "traces , or to specify special processor mode flags to indicate "debug, If

"phase step, ' I and "single step" modes of processor execution.

In addition to the obvious aids to debugging provided by breakpointing,
etc. , sampling of the work variable as mentioned previously provides a basis
fo r dynamic operation scheduling and detection of a trend toward system instability.

B. Sys tern Stability

A s mentioned previously under the subheading on Process States, samp-
ling the work variable, w , for all system processes provides a means of measur-
ing the scheduled system workload. If attention is restricted to "closed" real
time systems, definitions for backlog, degradation, and time-bounded stability
can be given. The discussion that follows is intuitive in nature; concepts are not
rigorously developed and are intended primarily to suggest possible further study.

1. Backlog. This name is given to an amount of work which has been
scheduled but has not been completely processed by the system. Backlog is clearly
a complicated function of time; in the context of process control, w provides a

61

good linear measure for it. Suppose that at time t, process Pi has a non-zero
w. The value is denoted by wi(t) . Since the system is closed, the average
values of m h o r y space and processor time for Pi can be measured or calcu-
lated and stored as constants in the associated PCB. Assuming they a re constant
and denoting the memory space and processor time as si and pi , respectively, for
the ith process, the space-time constant for Pi is

Therefore, if n is the number of processes known to the system,

B(t) =Ei wi(t), summed over all [i = 1,. . . ,nlwi(t)>o]

is the system backlog at time t. If because of the nature of the system it is
known that the backlog at time t must be eliminated by time to = t + A t o , then
an estimate of the system's ability to accomplish the backlog work in the
allowable interval can be made as follows: Suppose there are M equivalent
processors in the system and S is the total amount of (shared) main memory
space. Then, the fraction of system capability, measured as the available
system space-time, required to eliminate the backlog is

F(t,Ato) = B(t) = B(t) where eSMAt SMA t .-h '

system efficiency is represented by e< 1 and h is overhead. Clearly, if F>1,
the system cannot complete the backlog in the allotted time interval. If the
configuration allows spare processors to be switched into active operation, F
would be used as a first approximation to determine when spares should be
switched in or out in anticipation of the expected loading. In the case of many
relatively simple systems, the number of processes is small and their compute
cycle space-time constant can be accurately measured o r calculated. If these
systems are repetitive or cyclic in nature, it is possible to measure backlog
and plot it as a time function. To find the minimum number of processors that
wil l allow completion of the backlog, B(t) , set F = 1 giving

Mmin = greatest integer in + 1.
e SAt

2 . System Degradation. Suppose the processes of a system a re
ordered such that l>m implies that the priority (relative importance) of
pl &priority of Pm for all 1, m 4 n. Suppose further that when the maximum

62

number of available processors, My is in use, F>1. If the system has the
ability to schedule only the higher priority processes such that F can be made
less than 1, then the system is said to be operating in a degraded mode and
degradation, D(t), is defined to be

D(t, A t) = Zciwi(t), i = 1,. . . , k ,
i

That i s , degradation is simply that portion of the backlog at time t which can-
not be eliminated in the allotted A t interval.

If a system exhibits the property that the degradation is strictly increas-
ing on At, then it is clearly unstable on A t . * O n the other hand, i f D(t, At) is
monotonically decreasing on At, then the system can be said to exhibit the
property of time-bounded stability (over the interval At) .

C. Dynamic Scheduling

Development of a scheduling philosophy per se is beyond the scope of
this report. However, several points should be clarified. The process
control mechanism provides inherently for what might be termed "demand
scheduling. I ' The primitives will insure that the dispatcher gets control
whenever certain process state transitions occur. However, this is not
sufficient in the general case since a process could conceivably gain control
of a processor and not relinquish it.

This problem can be resolved by defining a system process that is
periodically given control because of its intentionally assigned high priority.
Once this process gains control, it requests activation (that it be placed in the ready
state) at some prespecified future time and then invokes the STOP primitive.
The sequence is repeated in order to insure that the dispatcher is given an
opportunity to reschedule all processes. This scheme supports what might
be termed "time-slice scheduling. I t

If a process is dispatched and its work cannot be completed in some
predetermined time interval, it must be preempted, assuming other processes
of higher or equal priority are not executing. Indiscriminate application of
this kind of policy can result in processes that are never quite caught up on
the work requested of them. A scheme that gives preferential treatment to
processes having a greater "age x work variable'! product may be applied in
special cases such as this. For instance, a low priority process might be

63

dispatched when its age x work variable product exceeds some threshold
value. This will tend to give a periodic boost to processes that add to the
backlog, but don't have a high enough priority or work variable value to be
dispatched.

64

SECTION VI. COMPARISONS

This section compares the conventional software approach to the hard-
ware approach on the basis of reasonable (although crude) estimates. Execu-
tion time and hardware cost are the comparison factors shown here; it is
believed that a similar trend can be shown for other factors such as weight,
volume, reliability, and power.

Reference /16/ indicates that cost/bit of core memory is 3 cents and
cost/gate is 10 cents. On the basis of the logic and software shown, it is
estimated that 20K bits (based on an estimated program length of 490 10
[40 bit] words) of memory are required for the depicted software, while
201'gates are estimated for the hardware logic. This yields a cost comparison of

Memory for software - $600.00

Logic for hardware - 20.00.

An execution time comparison is even more startling: assuming a
gate time of 14 nanoseconds (1 nanosecond is achievable) and an average
instruction operation time of 2 microseconds, a conservative comparison is
possible.

In the case of the hardware approach, it seems that a reasonable upper
boundary on the time is 10 main memory cycle times (assume 10 micro-
seconds). A reasonable lower boundary on the software approach time is
obtained by assuming that only half the main memory words a re fetched.
This gives a time of 490 microseconds.

The two comparisons, admittedly gross but believed to show the
correct relationships, result in the following illustration:

TABLE 9. COST AND TIME COMPARISON

Hardware 20

1 /49 Ratio (H/S) 1/30

490 Software 600

10

I

~ d

16 Kerner, H. and Gellman, L. : Memory Reduction Through Higher Level
Language Hardware. NASA TM X-53962, Research Achievements Review,
V. III, N. 9, 1969.

65

SECTION VII. CONCLUSIONS

The effort reported upon had as its principal thesis the belief, shared
by many computer system specialists, that portions of the executive system
can be pared away from the total system and formalized through a supporting
theory. The objective of the report is to outline an approach, based on current
trends in the NASA space program and ideas within the computer systems
community, to describing a significant aspect of an executive routine, and
showing how this aspect can be formalized.

Much discussion has taken place in the spaceborne computer systems
area regarding the feasibility and definition of a "hardware executive. If Some
have coined this phrase in the context of a capability for system fault detection,
isolation and reconfiguration control, while others have outlined "hardware
executivesff that embrace the entire functional domain of a real time monitor.
The author feels that the former interpretation is too restricted in the sense
that the specified functional responsibility is a subset of that of an executive
routine. The latter interpretation is valid from the point of view of functional
responsibility, but implementation schemes invariably make extensive use of all the
capabilities of a general purpose computer resulting principally in an extrac-
tion of the executive from the "application" computer, and the corresponding
dedication of a second "executive" computer.

There is little doubt that an extraction of the executive is desirable;
but, it is not desirable to merely transliterate the function from the domain
of software into either the domain of digital logic or stored logic. It seems
reasonable to assume that a reformulation of the control concepts is necessary
in order to insure a cost-effective transformation. That i s , the control func-
tions should be reexamined from the point of view of the target domain, and
analyzed with the engineering techniques found most successful to that domain.

The report has attempted to display the concepts of extraction and
reformulation as applied to the digital logic domain. The executive functions
discussed are extensions of functions needed in all real time systems and, as
a superset, all multiprogramming systems. The report defines the functions
and inductively derives a state diagram for the necessary control in a multi-
processor environment.

The state diagram represents a sequential finite state machine which
relates program dynamic requirements for computation time with the means
for determining the validity of the requirements and the means for allocating
the time. Having defined a machine, a mechanization for it is discussed in
tutorial form. The rationale for this approach is that it should strengthen
the computer hardware designer's understanding of a systems programming

67

view of executive control; in addition, it should better equip the systems
programmer to devise such transformations for himself. It is expected that
the overall result of this approach (aside from substantiating the results)
wi l l be a better mutual understanding between the programmer and hardware
architect.

It should be clear that many details were excluded, and many questions
left unanswered. It was not intended that a final detailed design be displayed.
Naturally, the lack of detail in certain areas vitiates the comparison of soft-
ware and digital logic approaches. However, a comparison was made and the
results are felt to display the general relationships with fidelity. obviously
a more in-depth analysis is required to substantiate this supposition.

68

I "

SECTION VIII. FLEXOMMENDATIONS

The report has outlined an approach to hardwired digital logic imple-
mentation of a nucleus for executive control of processes in a multiprogram-
ming, multiprocessor computer complex. While the approach appears
promising on the basis of intuition and the gross comparisons-given, more
detailed analysis is required to strengthen the credibility of the concept and
to more rigorously define the actual requirements. Based on these obser-
vations, the following recommendations are offered to direct further effort:

0 Further analysis is required to complete the specification
of the multiprocessor control logic. This includes expan-
sion to embrace all process and processor states, and
transition activation inputs (primitives and control lines).

0 Based on the complete specification, a careful evaluation
should be made and documented.

0 The concepts should be reduced to operable form for the
case of a single processor multiprogramming system
with similar evaluations.

If the resulting eva1uations.prove favorable to a digital logic imple- .
mentation scheme, the following recommendations are offered:

0 An analysis should be performed to determine the feasibility
and effectiveness of implementing some or all of the support-
ing software procedures (such as HWFAULT, INSERT, etc.)
in the form of microprogrammed stored logic.

0 In the case of both the Space Shuttle and Space Station, there
is a strong likelihood that some aspects of the support
functions can be rigorously defined. If so, they become
candidates for possible stored or discrete logic implemen-
tation. It is recommended that feasibility be determined
and that the appropriate trade studies be performed to
ascertain the most effective means of implementation.

0 Finally, the feasibility and effectiveness of an all-
microprogrammed approach to implementation should be
determined for the case of the NASA Space Ultrareliable
Modular Computer .

69

APPENDIX A

LOGIC MAPS FOR PROCESS CONTROL

The maps shown on the following pages (figure A l) aid in the deriva-
tion of Boolean expressions for the evaluation of the output variables for
process control. The r'/f' is used to mark those minterms that are "1. "
The shaded area is the union of all "1" and "don't-care" minternls. Unshaded
areas represent "0" minterms.

The process of reading the map, i. e. , determining the variables to be
used in composing the expression, is normally guided by a set of design objec-
tives. Since many different but logically equiv'alent expressions can usually
be developed for each variable, the design objectives are used as criteria for
the selection of a particular expression. Some typical criteria are: desired
degree of redundancy; the number of gate inputs; whether inverters are desir-
able; whether each input variable and its complement a re both available;
what type of logic devices are to be used, e. g. nand/nor, and/or, etc.

In the development of expressions for this report, no specific logic
circuits were assumed, and the main objective was to adhere to a "transparent"
reading philosophy for simplicity. (The author does not claim to have exper-
ience i n the application of digital design techniques; tricky derivations were
accordingly avoided intentionally.) An attempt w a s made , however, to couple
the largest number of variables in each term. Also, all maps were read to
satisfy "true" minterms with "don't-care'' minterms forced to "true" values to
eliminate terms where possible.

71

X x ACE + AECE + XEC'j + +
"-
ADE + ECDE

E
-
E

FIGURE A l . MAPS FOR DERIVATION OF
BOOLEAN EXPRESSIONS (Sheet 1 of 5)

72

G = eE + BCE + BE
(r k l f is taken to be "0" for
worst case.)

H = E D +

I = ACBE

FIGURE A l . MAPS FOR DERIVATION OF
BOOLEAN EXPRESSIONS (Sheet 2 of 5)

73

V = AC

FIGURE A l . MAPS FOR DERIVATION OF
BOOLEAN EXPRESSIONS (Sheet 3 of 5)

74

8 T = ACD
"

R ABC

s = CbE + BDE .+ BEE + BE

FIGURE A l . MAPS FOR D E W A T I O N OF
BOOLEAN EXPRESSIONS (Sheet 4 of 5)

75

Y = ABC
"_

J = CDE + BEE

FIGURE A l . MAPS FOR DERIVATION OF
BOOLEAN EXPRESSIONS (Sheet 5 of 5)

76

APPENDIX B

The functions outlined in figure B1 are those required as indicated in
figure 12, V r o c e s s Control Sequencing. If Only an overview is shown; no
attempt was made to give details since the peculiar architecture of a candidate
processor must be considered for proper definition.

It is clear from the following diagrams that all functions are simple.
Showing this simplicity is the main objective of the appendix. (Note that
function F2 is shown in figure 10 and is not repeated here.)

77

Pulse In

For F1, word number = 2
For F7, word number = 2

For F1, appropriate regisbrs

For F7, appropriate register
a re State FFs D and E.

is adder.

I
Pulse Out

Functions F1 and F7

FIGURE B1. PROCESS CONTROL FUNCTIONS (Sheet 1 of 10)

78

I

NAME address
into
MBR

Invoke
Not Specified - - - - - stack entry

insert logic

NAME

HWFAULT
HSFAULT
INSERT
REMOVE
DISPATCHER
EXIT1
ABORTI

FUNC TIBN

F3
F4
F 14
F15
F16
F17
F18

" PROCEDURE STACKING FUNCTIQNS

FIGURE El. PROCESS CONTROL FUNCTIONS (Sheet 2 of 10)

79

Pulse In (P) Pulse Out (PI) R Q
DELAY

FF

L S Q - -

Pulse P delayed until L drops
to false.

80

Fulse In: f

S e t L = O R Q L
(F19)

L
FF

S
Pulse In:

S e t L = l
Pulse Out

(F6)

FUNCTIONS F6 AND F19

FIGURE B1. PROCESS CONTROL FUNCTIONS (Sheet 4 of 10)

81

Pulse In

Strobe
Memory
W r i t e
Line

If w is imbedded in a
word, additional packing
is required.

82

Pulse In

complement
of 1 to the

adder

r Route
adder contents

to
MBR

Strobe
Memory
Write

Pulse Out

FUNCTION F9

FIGURE B1. PROCESS CONTROL FUNCTIONS (Sheet 6 of 10)

83

I

Pulse In

Pulse Out to
Set S = 1,

N = 1,
J =1,
H =O.

Pulse out

FUNCTION F10
?: .

FIGURE B1. PROCESS CONTROL FUNCTIONS (Sheet 7 of 10)

84

Pulse In

Pulse Out to
Sets = o ,

N = 0,
J =O.

Note: F10 and F11
could be
combined.

Pulse Out

FUNCTION F11

FIGURE B1. PROCESS CONTROL FUNCTIONS (Eheet 8 of 10)

85

Pulse In

Gate HG
into

MBR
J

Memory
Write
Line

Pulse Out

FUNCTION F12

Packing may be required.

FIGURE B1. PROCESS CONTROL FUNCTIONS (Sheet 9 of 10)

86

Pulse In - +

S Q . TCL

TCL
FF

R

Pulse Out

FUNCTION F20

FIGURE 131. PROCESS CONTROL FUNCTIONS (Sheet 10 of 10)

NASA-Langley, 1971 - 8
87

